
CONCURRENCY: PRACTICE AND EXPERIENCE, VOL. 9(11), 1261–1268 (NOVEMBER 1997)

A Web-based distributed and collaborative 3D
animation environment
TAIN-CHI LU1, CHUNG-WEN CHIANG1, CHUNGNAN LEE1∗AND TONG-YEE LEE2

1Institute of Computer and Information Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
(e-mail: cnlee@cie.nsysu.edu.tw)

2Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan,
Taiwan, ROC

SUMMARY
Many applications on the Web require active processing and co-ordination of services. In this
paper we describe the design of a distributed 3D animation system built by integrating the Java
language, parallel virtual machine (PVM) software, a collaborative mechanism, 3D computer
graphics and the Web technologies. To achieve collaborative co-operation and functional inde-
pendence, session control and system agents are devised in this system. In particular, we propose
a simplified collaborative group definition, collaborative policies, and the state of participants
to dynamically manage participants in this Web-based distributed environment. Based on our
proposed mechanism, the server can efficiently determine the status of collaboration activities.
1997 John Wiley & Sons, Ltd.

Concurrency: Pract. Exper., Vol. 9(11), 1261–1268 (1997)

No. of Figures: 4. No. of Tables: 2. No. of References: 7.

INTRODUCTION

In addition to using Java applets for visualization and information exchange, Java[1] gains
popularity as a language for parallel computing on the Web. Although it is possible to
use Java alone as a language for the parallel computing of the scientific application[2],
it is worthwhile to incorporate Java applets with the existing distributed computing envi-
ronments, such as PVM[3], MPI, etc. The marriage of the Java language and the existing
computing environment provides a quick and reliable Web-based distributed computing
environment.

3D animation has many important applications such as in the film industry and scientific
visualization. However, it suffers from the lack of a collaborative environment and needs
large computation power. With collaboration capability, it can help people work together and
perform common tasks in a shared environment. A collaborative environment must satisfy
the computer-supported co-operative work (CSCW) requirements – sharing an information
space to design an effective technical system. To solve the computation needs for the
generation of photorealistic 3D animation, we employ PVM as the distributed computing
technology. The proposed system is an interactive, distributed 3D animation system across
the Internet with the emphasis on the collaboration among different participants.

∗Correspondence to: Dr. C. Lee, Institute of Computer and Information Engineering, National Sun Yat-Sen
University, Kaohsiung, Taiwan, ROC. (e-mail: cnlee@cie.nsysu.edu.tw)

CCC 1040–3108/97/111261–08$17.50 Received April 1997
1997 John Wiley & Sons, Ltd. Revised July 1997

1262 T. LU ET AL.

AN OVERVIEW OF SYSTEM ARCHITECTURE

To generate a photorealistic image, we exploit a raytracing algorithm which is very com-
putationally intensive. Our distributed animation system is a client–server architecture. In
the client site, we use HTML incorporated with a Java applet to implement a front-end
graphical user interface (GUI). With this arrangement, the WWW browser accepts a user’s
service request and then evokes a Java applet execution. This Java applet will send the en-
vironment’s parameters to the Web server for further processing. The system architecture
is illustrated as Figure 1. A user first accesses our service from any WWW browser. Then a
Java bytecode encapsulating the front-end GUI is shipped to the client site. From the front-
end GUI, the end-user can configure the PVM heterogeneous computing environment by
adding or deleting computing hosts. The Java applet establishes a reliable socket connection
with a remote PVM daemon and sends the system configuration to the PVM daemon. This
PVM daemon will later execute a pvm addhosts routine to form a virtual parallel machine.
Similarly, we send the graphics rendering information to the parallel raytracer or send back
the rendering result to the WWW browser through the same socket connection. The socket
connection in the Web client uses a specified port to communicate with a server socket. We
assemble the client socket and server socket into a communication agent. The characteristic
of the communication agent is functional independence. Both sockets just send the signals
or messages to the communication agent. Other agents, such as the interface agent, session
control agent and token management agent, are explained in the next two Sections.

Figure 1. The high-level block architecture of the distributed 3D animation system

COLLABORATION MODEL

Collaboration[4] means that a group of users work together on the same problem. In such
a situation, awareness of individual and group activities is an important issue, especially
for a distributed environment. Awareness is fundamental to co-ordination of activities and

Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997) 1997 John Wiley & Sons, Ltd.

WEB-BASED 3D ANIMATION ENVIRONMENT 1263

sharing of information. Collaboration control mechanism regulates how multiple users
assemble and interact over the shared data.

Table 1. Simplified collaborative group definition (SCGD)

Item Definition

1 <Group> ::= GROUP <Group-name> <Topic>
<State> <Group-work-attributes>
<Group-manager>

2 <Group-name> ::= ID
3 <Topic> ::= <Statement>
4 <State> ::= “Private(Invite only)” |“Public”
5 <Group-work-attributes> ::= <Participant> |

<Group-work-attributes> + <participant> |
<Group-work-attributes> - <Participant>

6 <Group-manager> ::= <Participant>
<Manager-candidates>

7 <Manager-candidates> ::= <Participant-name-list>
8 <Statement> ::= CHAR | φ
9 <Participant> ::= <Participant-name>

<Participant-attributes>
10 <Participant-name> ::= ID
11 <Participant-name-list> ::=

<Participant-name-list>, <Participant-name>
12 <Participant-attributes> ::=

<Specialty> <Responsibility> <Location>
13 <Specialty> ::= <Statement>
14 <Responsibility> ::= ITEM
15 <Location> ::= <Statement>

Session control

Users can login into a collaboration group by sending an HTTP request. He or she can
either join an existing group or create a new group. A group of collaboration lasts until
the group is terminated by the system or when nobody has a desire to be the leader. In
this subsection, we propose a simplified collaborative group definition (SCGD)[4] that is a
simplified description of the syntax, or form, of individual statements. Table 1 shows a set
of language specifications, which is in the Backus–Naur form, for the SCGD. The syntax
provides a description for an efficiently collaborative session in the system.

Collaboration policies and mechanism

Session control encompasses the management of participation, authentication and presen-
tation of co-ordinated user interfaces. The session manager provides a conduit for control.
In the following we define collaboration policies and mechanisms through some operators
operating on the set and its elements. A group G = {xi | xi ∈ G, i = 1, 2, 3, . . . , n} is
defined as an ordered set with finite nodes, each node is a variable that has a state and
information.

Collaboration policies are defined as a set of unary or binary operations on Gi and its

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997)

1264 T. LU ET AL.

elements, i = 1, 2, 3, . . . , n. We list these operators as follows:

Empty (Gi): When a group G is empty, it means that the group does not have a leader or
any participant. The session control agent will terminate an empty group.

Leader (Gi, x): It assigns x to be the group manager of the set. xwill be placed in the first
element in the ordered set.

Participant (Gi): Participant (Gi) = {xi | xi ∈ Gi, i = 1, 2, 3, . . . , n}. The operator of
the element is to find out the participants in a group.

Join permission (Gi, x) is a mapping Gi × x → True or False. When a new participant
wants to join a group G, they must negotiate the group manager and wait for the
response. If the mapping is true, then x is allowed to join the existing group Gi;
otherwise x is not allowed to join the groupGi.

Create (Gi, x): A user can create a new working group in the collaborative system. The
group information includes group name, topic, state, group work attributes and
manager.

Append (Gi, x) = Gi ∪ {x}. When x is allowed to join the group Gi, it is appended to
the last element.

Participant information (xi): The information of a participant includes the name, spe-
cialty, responsibility and location.

Leave (Gi, x) = Gi − {xi}. To leave a group, a user must inform the group manager.
If the group manager wants to leave, the rule to choose a new group manager is
described as follows:

1. The group manager should find a new group manager among other participants.

2. If there is a participant that wants to be the group manager, this group will be
chaired by this new manager; otherwise, the group is terminated.

To keep track of the state of each participant is important to manage the participant
in the collaborative model. We use the finite state machine concepts developed on sets
and functions to maintain the state information of each participant. By using the concepts,
the collaborative environment in server mode can simply be an input–output device. The
system agent concept can be the medium to be transferred from input to output.

SYSTEM AGENTS

An agent is the actual site of media interaction for a user[5]. It may actually implement
media interaction functionality, or may use orthogonal abstract mechanisms to achieve the
same effect. All agents are programmed in Java and executed as bytecode by Java virtual
machines (JVM). These agents supporting teamwork at the same time in different places are
within synchronous distributed interaction or real-time interaction. There are four classes
of agents in the system – namely, interface agent, communication agent, session control
agent and token management agent. The interface agent provides intuitive methods for
session, interaction and co-ordination control, and supports media-rich communication. It
accepts requests from different modalities and packs user’s requests in a form that will be
transmitted to a session control agent for further processing by a communication agent.
The communication agent is responsible for communication among Web clients and Web
servers. Communication agents can not only employ network protocols such as TCP/IP to

Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997) 1997 John Wiley & Sons, Ltd.

WEB-BASED 3D ANIMATION ENVIRONMENT 1265

transmit messages among themselves, but they also retrieve data holdings in various native
formats and dictate how the session control agent interprets and processes these messages.

The session control agent provides event-driven notification services by requesting col-
lections according to user scripts. The session control is in charge of client registration,
request submission, result delivery and delivering the locked tokens’ status to the token
management agent, etc. In addition, the session control agent is responsible for establishing
and maintaining groups of users, and co-ordinating the activities of the various modules
that are operating in the conference mode. It regulates how multiple users assemble and
interact over shared data.

In the system, we use the term ‘token’ to include resources of all kinds such as a rendering
database. A fixed number of tokens in a form of an object are used to communicate and
share among the processes of the system. Each token can be held either by a group or by
the token management agent which maintains the token pool. A situation like this, where
several participants from the same group access and manipulate the same data (token)
concurrently, and the outcome of the execution, depends on the participant order in which
the access takes place. To guard against the situation above, we use some control mechanism
to ensure that only one participant at a time can manipulate the data. In our implementation,
a manager is selected among the members of the same group.

PARALLEL RENDERING ALGORITHM

The efficiency of the parallel computing is critical for the computationally intensive ap-
plications, such as raytracing, radiosity, etc. In this Section, we first discuss the global
distributed control (GDC) algorithm, which has the ability to provide a dynamic ability to
adjust load imbalances and to provide fault tolerance.

In the past, we have exploited GDC to balance raytracing on the multicomputer system.
The GDC method is a kind of decentralized parallel computation environment. Applying
the GDC method to the distributed computing environment is in [6,7], where detailed
results are available. Here, we present some new experimental results of the fault tolerance
ability in our system.

Fault tolerance

Because a ring’s construction is so weak that any lost message may incur a deadlock, it is
important to incorporate fault tolerance into the GDC’s environment. The process of fault
tolerance shown in Figure 2 is described as follows:

1. When a processor Pi finishes its job and is idle, then Pi will visit Pi+1 to ask for a
new scanline to render. There are two cases to consider. One is when Pi+1 is so busy
that it cannot response to the request of Pi. The other is when Pi+1 is crashed.

2. To distinguish whether the processorPi+1 is crashed or busy, we must set the timeout.
If Pi+1 does not respond to the request more than three times, we can regard that
Pi+1 as crashed.

3. If Pi+1 is crashed, Pi will send a message to the master and ask it to check the global
scanline table. Then the master will notify Pi to take over the incomplete tasks that
were owned by the processPi+1. The information includes how many scanlinesPi+1

has not finished and the processor identifier of Pi+1’s next processor. At present, Pi

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997)

1266 T. LU ET AL.

can replace Pi+1 to connect with the Pi+1’s next processor, so it looks like a satellite
to protect the planet when the planet cannot normally operate.

Figure 2. The fault tolerance mechanism of GDC

Table 2. The performance of fault tolerance after deleting two Sparc 20 s from PVM’s console

Sparc 2 Sparc 10 Sparc 20 Total relative power Performance

No of workstations 3 2 4 – –
Relative power 0.77 1 1.96 – –
Before deleting hosts 3× 0.77 2× 1 4× 1.96 12.15 14 s
After deleting hosts 3× 0.77 2× 1 2× 1.96 8.23 19 s
Degradation 0 0 3.92 3.93 42.85 %

For this fault tolerance scheme, the crashed process can be replaced successfully by the
preceding processor without paying too much overhead. The other processors can continue
their jobs without spending the extra time to modify their environment’s parameters. To
test fault tolerance ability, we conducted an experiment performing raytracing with nine
workstations using PVM. After the master process gathered 300 scanlines from the slave
processes, two workstations (i.e. two Sparc 20s) were deleted from the PVM console. In
the master process, we adopted the blocking receiving with timeout. So when some given
hosts are deleted, the master process can still receive the rendering result from other slave
processes. The ball image as shown in Figure 4 is used as the testing scene. The results in
Table 2 show that the rendering process is still running after two workstations are deleted,
and thus the fault tolerance ability is demonstrated.

SYSTEM DESCRIPTION

The system consists of four parts: namely, the collaborative environment, the PVM console,
the rendering console and the display console. We briefly describe each part in some details.

The interface of the collaborative environment as shown in Figure 3 provides a login
circumstance for users to create a new group or join an existing group. When a user partic-
ipates in a group, the interface agent will display the group information in the applet (GUI
front-end). In addition, users can use the ‘talk’ or ‘white board’ media to communicate
with other participants in this group. We adapt both the broadcasting and single-user mes-

Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997) 1997 John Wiley & Sons, Ltd.

WEB-BASED 3D ANIMATION ENVIRONMENT 1267

Figure 3. The user interface of collaborative environment

sage passing methods to talk with other users. Two types of communication are provided,
namely, private and public modes.

The PVM console allows users to add or delete a set of hosts. The user can config-
ure his/her virtual machine interactively according to their computing requirement. After
configuring their parallel virtual machine, the user can proceed to the ‘rendering’ console
for raytracing images. The rendering console provides options to dynamically control the
process of raytracing, Filename, Camera position, Light source, Background, Rotation,
Zoom, Render, Record and Help.

Users can display a static rendered image in the browser or an animation sequence in
an internal viewer. The interface agent will pop a window as an internal viewer to display
the contiguous images. With regard to the image compression format, a static rendered
image is compressed in a JPEG format. Due to the limitation of the network bandwidth
and the time-consuming computation in raytracing, after finishing a rendered image, the

Figure 4. The animation display screen

1997 John Wiley & Sons, Ltd. Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997)

1268 T. LU ET AL.

token agent will send a signal to command the interface agent to display this rendered
image. So the user can view the animation sequences frame by frame before finishing the
rendering. After finishing all frames’ rendering, the MPEG format is adapted to compress
the animation sequences, and the interface agent will display this MPEG file in the internal
viewer. A sample of the display is shown in Figure 4.

CONCLUSIONS

In this paper, we have described a distributed and collaborative system using the Web
browser, PVM, agents, Java and Java socket classes. It provides a collaborative and dis-
tributed computing platform for users to design, discuss, compute and visualize the 3D
animation over the Web. We have proposed a simplified collaborative group definition,
collaborative policies and the state of participants to dynamically manage participants for
the collaborative model. Based on the proposed mechanisms, the server can efficiently
determine the status of collaboration activities.

REFERENCES

1. J. Gosling, F. Yelin and the Java Team, The Java Application Programming Interface, Addison-
Wesley Developer Press, Sunsoft Java Series, 1996.

2. Bryan Carpenter, Yuh-Jye Chang, Geoffrey Fox, Donald Leskiw and Xiaoming Li, ‘Experiments
with HPJava’, Java for Science and Engineering Computation, in
http://www.npac.syr.edu/projects/javaforcse/javameettalks.html.

3. V. S. Sunderam, ‘PVM: a framework for parallel distributed computing’, Concurrency: Pract.
Exp., 2(4), 315–339 (1990).

4. Eve M. Schooler, ‘Conferencing and collaborative computing’, Multimedia Syst., 210–225
(1996).

5. Taizo Miyachi and Norio Shiratori, ‘A multi-agent collaboration system in planning with reduced
coordination cost’, in Proc. 11th International Conference on Information Networking, Vol. 1,
1997, pp. 3D-1.1–3D-1.8.

6. T. Y. Lee, C. S. Raghavendra and J. B. Nicholas, ‘Experimental evaluation of load balancing
strategies for ray tracing on parallel processor’, to appear in Integr. Comput.-Aided Eng. J. 4,
(1997).

7. Chungnan Lee, Tong-yee Lee, Tainchi Lu and Yao-tsung Chen, ‘A World-Wide Web based
distributed animation environment’, J. Comput. Netw. ISDN Syst., Special Issue on Visualization
and Graphics on the WWW, 1997.

Concurrency: Pract. Exper., Vol. 9, 1261–1268 (1997) 1997 John Wiley & Sons, Ltd.

	INTRODUCTION
	AN OVERVIEW OF SYSTEM ARCHITECTURE
	COLLABORATION MODEL
	Session control
	Collaboration policies and mechanism

	SYSTEM AGENTS
	PARALLEL RENDERING ALGORITHM
	Fault tolerance

	SYSTEM DESCRIPTION
	CONCLUSIONS
	REFERENCES

